Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.806
Filtrar
1.
J Neuroeng Rehabil ; 21(1): 55, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622634

RESUMEN

BACKGROUND: The therapeutic benefits of motor imagery (MI) are now well-established in different populations of persons suffering from central nervous system impairments. However, research on similar efficacy of MI interventions after amputation remains scarce, and experimental studies were primarily designed to explore the effects of MI after upper-limb amputations. OBJECTIVES: The present comparative study therefore aimed to assess the effects of MI on locomotion recovery following unilateral lower-limb amputation. METHODS: Nineteen participants were assigned either to a MI group (n = 9) or a control group (n = 10). In addition to the course of physical therapy, they respectively performed 10 min per day of locomotor MI training or neutral cognitive exercises, five days per week. Participants' locomotion functions were assessed through two functional tasks: 10 m walking and the Timed Up and Go Test. Force of the amputated limb and functional level score reflecting the required assistance for walking were also measured. Evaluations were scheduled at the arrival at the rehabilitation center (right after amputation), after prosthesis fitting (three weeks later), and at the end of the rehabilitation program. A retention test was also programed after 6 weeks. RESULTS: While there was no additional effect of MI on pain management, data revealed an early positive impact of MI for the 10 m walking task during the pre-prosthetic phase, and greater performance during the Timed Up and Go Test during the prosthetic phase. Also, a lower proportion of participants still needed a walking aid after MI training. Finally, the force of the amputated limb was greater at the end of rehabilitation for the MI group. CONCLUSION: Taken together, these data support the integration of MI within the course of physical therapy in persons suffering from lower-limb amputations.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Equilibrio Postural , Estudios de Tiempo y Movimiento , Amputación Quirúrgica , Amputados/rehabilitación , Caminata/fisiología
2.
JMIR Res Protoc ; 13: e57329, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669065

RESUMEN

BACKGROUND: Relative motion between the residual limb and socket in individuals with transtibial limb loss can lead to substantial consequences that limit mobility. Although assessments of the relative motion between the residual limb and socket have been performed, there remains a substantial gap in understanding the complex mechanics of the residual limb-socket interface during dynamic activities that limits the ability to improve socket design. However, dynamic stereo x-ray (DSX) is an advanced imaging technology that can quantify 3D bone movement and skin deformation inside a socket during dynamic activities. OBJECTIVE: This study aims to develop analytical tools using DSX to quantify the dynamic, in vivo kinematics between the residual limb and socket and the mechanism of residual tissue deformation. METHODS: A lower limb cadaver study will first be performed to optimize the placement of an array of radiopaque beads and markers on the socket, liner, and skin to simultaneously assess dynamic tibial movement and residual tissue and liner deformation. Five cadaver limbs will be used in an iterative process to develop an optimal marker setup. Stance phase gait will be simulated during each session to induce bone movement and skin and liner deformation. The number, shape, size, and placement of each marker will be evaluated after each session to refine the marker set. Once an optimal marker setup is identified, 21 participants with transtibial limb loss will be fitted with a socket capable of being suspended via both elevated vacuum and traditional suction. Participants will undergo a 4-week acclimation period and then be tested in the DSX system to track tibial, skin, and liner motion under both suspension techniques during 3 activities: treadmill walking at a self-selected speed, at a walking speed 10% faster, and during a step-down movement. The performance of the 2 suspension techniques will be evaluated by quantifying the 3D bone movement of the residual tibia with respect to the socket and quantifying liner and skin deformation at the socket-residuum interface. RESULTS: This study was funded in October 2021. Cadaver testing began in January 2023. Enrollment began in February 2024. Data collection is expected to conclude in December 2025. The initial dissemination of results is expected in November 2026. CONCLUSIONS: The successful completion of this study will help develop analytical methods for the accurate assessment of residual limb-socket motion. The results will significantly advance the understanding of the complex biomechanical interactions between the residual limb and the socket, which can aid in evidence-based clinical practice and socket prescription guidelines. This critical foundational information can aid in the development of future socket technology that has the potential to reduce secondary comorbidities that result from complications of poor prosthesis load transmission. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/57329.


Asunto(s)
Cadáver , Tibia , Humanos , Tibia/diagnóstico por imagen , Tibia/cirugía , Miembros Artificiales , Muñones de Amputación/diagnóstico por imagen , Muñones de Amputación/fisiopatología , Fenómenos Biomecánicos/fisiología , Movimiento/fisiología , Piel/diagnóstico por imagen , Extremidad Inferior/diagnóstico por imagen , Extremidad Inferior/cirugía , Extremidad Inferior/fisiología
3.
PLoS One ; 19(4): e0300447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38564508

RESUMEN

Quantitative gait analysis is important for understanding the non-typical walking patterns associated with mobility impairments. Conventional linear statistical methods and machine learning (ML) models are commonly used to assess gait performance and related changes in the gait parameters. Nonetheless, explainable machine learning provides an alternative technique for distinguishing the significant and influential gait changes stemming from a given intervention. The goal of this work was to demonstrate the use of explainable ML models in gait analysis for prosthetic rehabilitation in both population- and sample-based interpretability analyses. Models were developed to classify amputee gait with two types of prosthetic knee joints. Sagittal plane gait patterns of 21 individuals with unilateral transfemoral amputations were video-recorded and 19 spatiotemporal and kinematic gait parameters were extracted and included in the models. Four ML models-logistic regression, support vector machine, random forest, and LightGBM-were assessed and tested for accuracy and precision. The Shapley Additive exPlanations (SHAP) framework was applied to examine global and local interpretability. Random Forest yielded the highest classification accuracy (98.3%). The SHAP framework quantified the level of influence of each gait parameter in the models where knee flexion-related parameters were found the most influential factors in yielding the outcomes of the models. The sample-based explainable ML provided additional insights over the population-based analyses, including an understanding of the effect of the knee type on the walking style of a specific sample, and whether or not it agreed with global interpretations. It was concluded that explainable ML models can be powerful tools for the assessment of gait-related clinical interventions, revealing important parameters that may be overlooked using conventional statistical methods.


Asunto(s)
Miembros Artificiales , Análisis de la Marcha , Humanos , Marcha , Caminata , Rodilla
4.
Sci Rep ; 14(1): 7959, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575608

RESUMEN

Cranial reconstructions are essential for restoring both function and aesthetics in patients with craniofacial deformities or traumatic injuries. Titanium prostheses have gained popularity due to their biocompatibility, strength, and corrosion resistance. The use of Superplastic Forming (SPF) and Single Point Incremental Forming (SPIF) techniques to create titanium prostheses, specifically designed for cranial reconstructions was investigated in an ovine model through microtomographic and histomorphometric analyses. The results obtained from the explanted specimens revealed significant variations in bone volume, trabecular thickness, spacing, and number across different regions of interest (VOIs or ROIs). Those regions next to the center of the cranial defect exhibited the most immature bone, characterized by higher porosity, decreased trabecular thickness, and wider trabecular spacing. Dynamic histomorphometry demonstrated differences in the mineralizing surface to bone surface ratio (MS/BS) and mineral apposition rate (MAR) depending on the timing of fluorochrome administration. A layer of connective tissue separated the prosthesis and the bone tissue. Overall, the study provided validation for the use of cranial prostheses made using SPF and SPIF techniques, offering insights into the processes of bone formation and remodeling in the implanted ovine model.


Asunto(s)
Miembros Artificiales , Titanio , Ovinos , Animales , Humanos , Prótesis e Implantes , Implantación de Prótesis , Osteogénesis , Oveja Doméstica , Cráneo/diagnóstico por imagen , Aleaciones , Ensayo de Materiales , Propiedades de Superficie
5.
Ann Plast Surg ; 92(4S Suppl 2): S96-S100, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556655

RESUMEN

PURPOSE: Osseointegration (OI) is a novel alternative to traditional socket-suspended prostheses for lower-limb amputees, eliminating the socket-skin interface and allowing for weight bearing directly on the skeletal system. However, the stoma through which the implant attaches to the external prosthesis creates an ingress route for bacteria, and infection rates as high as 66% have been reported. The aims of this study are to classify infection management and long-term outcomes in this patient population to maximize implant salvage. METHODS: An institutional review board-approved retrospective analysis was performed on all patients who underwent lower-limb OI at our institution between 2017 and 2022. Demographic, operative, and outcome data were collected for all patients. Patients were stratified by the presence and severity of infection. Chi-square and t tests were performed on categorical and continuous data, respectively, using an alpha of 0.05. RESULTS: One hundred two patients met our study criteria; 62 had transfemoral OI and 40 had transtibial OI. Patients were followed for 23.8 months on average (range, 3.5-63.7). Osteomyelitis was more likely than soft tissue infection to be polymicrobial in nature (71% vs 23%, P < 0.05). Infections at the stoma were mostly (96%) managed with oral antibiotics alone, whereas deeper soft tissue infections also required intravenous antibiotics (75%) or operative washout (19%). Osteomyelitis was managed with intravenous antibiotics and required operative attention; 5 (71%) underwent washout and 2 (29%) underwent explantation. Both implants were replaced an average of 3.5 months after explantation. There was no correlation between history of soft tissue infection and development of osteomyelitis (P > 0.05). The overall implant salvage rate after infection was 96%. CONCLUSIONS: This study describes our institution's experience managing infection after OI and soft tissue reconstruction. Although infections do occur, they are easily treatable and rarely require operative intervention. Explantation due to infection is rare and can be followed up with reimplantation, reaffirming that OI is a safe and effective treatment modality.


Asunto(s)
Miembros Artificiales , Osteomielitis , Infecciones de los Tejidos Blandos , Humanos , Oseointegración , Implantación de Prótesis , Estudios Retrospectivos , Infecciones de los Tejidos Blandos/etiología , Miembros Artificiales/efectos adversos , Resultado del Tratamiento , Antibacterianos/uso terapéutico , Osteomielitis/etiología , Osteomielitis/cirugía
6.
J Neuroeng Rehabil ; 21(1): 57, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627772

RESUMEN

INTRODUCTION: Despite recent technological advances that have led to sophisticated bionic prostheses, attaining embodied solutions still remains a challenge. Recently, the investigation of prosthetic embodiment has become a topic of interest in the research community, which deals with enhancing the perception of artificial limbs as part of users' own body. Surface electromyography (sEMG) interfaces have emerged as a promising technology for enhancing upper-limb prosthetic control. However, little is known about the impact of these sEMG interfaces on users' experience regarding embodiment and their interaction with different functional levels. METHODS: To investigate this aspect, a comparison is conducted among sEMG configurations with different number of sensors (4 and 16 channels) and different time delay. We used a regression algorithm to simultaneously control hand closing/opening and forearm pronation/supination in an immersive virtual reality environment. The experimental evaluation includes 24 able-bodied subjects and one prosthesis user. We assess functionality with the Target Achievement Control test, and the sense of embodiment with a metric for the users perception of self-location, together with a standard survey. RESULTS: Among the four tested conditions, results proved a higher subjective embodiment when participants used sEMG interfaces employing an increased number of sensors. Regarding functionality, significant improvement over time is observed in the same conditions, independently of the time delay implemented. CONCLUSIONS: Our work indicates that a sufficient number of sEMG sensors improves both, functional and subjective embodiment outcomes. This prompts discussion regarding the potential relationship between these two aspects present in bionic integration. Similar embodiment outcomes are observed in the prosthesis user, showing also differences due to the time delay, and demonstrating the influence of sEMG interfaces on the sense of agency.


Asunto(s)
Miembros Artificiales , Humanos , Electromiografía/métodos , Extremidad Superior , Mano , Algoritmos
7.
Sci Rep ; 14(1): 7989, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580783

RESUMEN

Regardless of the species, birds are exposed to injuries that lead to amputation of part of the body structure and often euthanasia. Based on the need for new technologies that improve the quality of life of birds with locomotor problems, the present case reports aimed to describe the development of custom-made three-dimensional (3D) prostheses for domestic and wild birds that suffered amputation or malformation of the hind limb. Using the measurements of the bird, a digital model was created for 3D printing using fused deposition modeling technology (FDM) by the Brazilian company 3D Medicine. In this study we report the use of 3D prosthesis for the rehabilitation of three birds with locomotor disorders in Brazil, the animals adapted to the custom-made prosthesis with an improvement in quality of life, better distribution of body weight, locomotion, and landing. This study describes the development of 3D prostheses for birds in Brazil, the first report of this technology for these species, and the pioneering development of socket prostheses for small birds. 3D prostheses offer a high-efficiency solution to improve the quality of life of animals with amputations and malformations of the hind limbs. In addition, 3D technology provides valuable tools for veterinary medicine, developing custom-made models for the most different anatomical demands of animal patients.


Asunto(s)
Miembros Artificiales , Calidad de Vida , Animales , Aves , Impresión Tridimensional , Implantación de Prótesis
8.
Sci Rep ; 14(1): 5759, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459106

RESUMEN

Achieving proper socket fit is crucial for the effective use of a prosthesis. However, digital socket design lacks standardization and presents a steep learning curve for prosthetists. While research has focused on digital socket design for the lower-limb population, there is a research gap in upper-limb socket design. This study aimed to characterize the design (rectification) process for the transradial socket, specifically the three-quarter Northwestern-style design, towards the development of a more systematic, data-driven socket design approach. Fourteen (n = 14) pairs of unrectified and rectified plaster models were compared. Six common rectification zones were identified through shape analysis, with zones of plaster addition being the most prominent in terms of volume and surface area. A novel 3D vector mapping technique was employed, which revealed that most of the shape changes occurred in the anterior-posterior and proximal-distal directions. Overall, the interquartile range of each rectification zone demonstrated reasonable consistency in terms of volume, surface deviation, and 3D vector representation. The initial findings from this study support the potential for quantitively modelling the transradial socket design process. This opens the door for developing tools for categorizing and predicting socket designs across diverse populations through the application of techniques such as machine learning.


Asunto(s)
Miembros Artificiales , Diseño de Prótesis , Implantación de Prótesis , Extremidad Inferior , Extremidad Superior
9.
J Biomed Mater Res B Appl Biomater ; 112(3): e35398, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38456331

RESUMEN

Patients implanted with osseointegrated (OI) prosthetic systems have reported vastly improved upper and lower extremity prosthetic function compared with their previous experience with socket-suspension systems. However, OI systems have been associated with superficial and deep-bone infections and implant loosening due, in part, to a failure of the osseointegration process. Although monitoring the osseointegration using circulating biomarkers has clinical relevance for understanding the progression of osseointegration with these devices, it has yet to be established. Ten patients were enrolled in this study. Blood samples were collected at pre-selected times, starting before implantation surgery, and continuing to 12 months after the second surgery. Bone formation markers, bone resorption markers, and circulating amino acids were measured from blood samples. A linear mixed model was generated for each marker, incorporating patient ID and age with the normalized marker value as the response variable. Post hoc comparisons were made between 1 week before Stage 1 Surgery and all subsequent time points for each marker, followed by multiple testing corrections. Serial radiographic imaging of the residual limb containing the implant was obtained during follow-up, and the cortical index (CI) was calculated for the bone at the porous region of the device. Two markers of bone formation, specifically bone-specific alkaline phosphatase (Bone-ALP) and amino-terminal propeptide of type I procollagen (PINP), exhibited significant increases when compared with the baseline levels of unloaded residual bone prior to the initial surgery, and they subsequently returned to their baseline levels by the 12-month mark. Patients who experienced clinically robust osseointegration experienced increased cortical bone thickness at the porous coated region of the device. A medium correlation was observed between Bone-ALP and the porous CI values up to PoS2-M1 (p = .056), while no correlation was observed for PINP. An increase in bone formation markers and the lack of change observed in bone resorption markers likely reflect increased cortical bone formation induced by the end-loading design of the Utah OI device used in this study. A more extensive study is required to validate the correlation observed between Bone-ALP and porous CI values.


Asunto(s)
Miembros Artificiales , Resorción Ósea , Humanos , Oseointegración , Proyectos Piloto , Biomarcadores , Fosfatasa Alcalina
10.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475055

RESUMEN

The study aims to construct an inertial measuring system for the application of amputee subjects wearing a prosthesis. A new computation scheme to process inertial data by installing seven wireless inertial sensors on the lower limbs was implemented and validated by comparing it with an optical motion capture system. We applied this system to amputees to verify its performance for gait analysis. The gait parameters are evaluated to objectively assess the amputees' prosthesis-wearing status. The Madgwick algorithm was used in the study to correct the angular velocity deviation using acceleration data and convert it to quaternion. Further, the zero-velocity update method was applied to reconstruct patients' walking trajectories. The combination of computed walking trajectory with pelvic and lower limb joint motion enables sketching the details of motion via a stickman that helps visualize and animate the walk and gait of a test subject. Five participants with above-knee (n = 2) and below-knee (n = 3) amputations were recruited for gait analysis. Kinematic parameters were evaluated during a walking test to assess joint alignment and overall gait characteristics. Our findings support the feasibility of employing simple algorithms to achieve accurate and precise joint angle estimation and gait parameters based on wireless inertial sensor data.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Marcha , Caminata , Amputación Quirúrgica , Rodilla , Articulación de la Rodilla , Fenómenos Biomecánicos
11.
J Biomech Eng ; 146(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38470376

RESUMEN

Individuals with transtibial amputation (TTA) experience asymmetric lower-limb loading which can lead to joint pain and injuries. However, it is unclear how walking over unexpected uneven terrain affects their loading patterns. This study sought to use modeling and simulation to determine how peak joint contact forces and impulses change for individuals with unilateral TTA during an uneven step and subsequent recovery step and how those patterns compare to able-bodied individuals. We expected residual limb loading during the uneven step and intact limb loading during the recovery step would increase relative to flush walking. Further, individuals with TTA would experience larger loading increases compared to able-bodied individuals. Simulations of individuals with TTA showed during the uneven step, changes in joint loading occurred at all joints except the prosthetic ankle relative to flush walking. During the recovery step, intact limb joint loading increased in early stance relative to flush walking. Simulations of able-bodied individuals showed large increases in ankle joint loading for both surface conditions. Overall, increases in early stance knee joint loading were larger for those with TTA compared to able-bodied individuals during both steps. These results suggest that individuals with TTA experience altered joint loading patterns when stepping on uneven terrain. Future work should investigate whether an adapting ankle-foot prosthesis can mitigate these changes to reduce injury risk.


Asunto(s)
Miembros Artificiales , Marcha , Humanos , Fenómenos Biomecánicos , Caminata , Amputación Quirúrgica , Articulación del Tobillo
12.
J Neuroeng Rehabil ; 21(1): 35, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454427

RESUMEN

BACKGROUND: Persons with a transfemoral amputation (TFA) often experience difficulties in daily-life ambulation, including an asymmetrical and less stable gait pattern and a greater cognitive demand of walking. However, it remains unclear whether this is effected by the prosthetic suspension, as eliminating the non-rigid prosthetic connection may influence stability and cortical activity during walking. Spatiotemporal and stability-related gait parameters, as well as cortical activity during walking, were evaluated between highly active individuals (MFC-level K3-4) with a TFA and able-bodied (AB) persons, and between persons with a bone-anchored prosthesis (BAP) and those with a socket-suspended prosthesis (SSP). METHODS: 18 AB persons and 20 persons with a unilateral TFA (10 BAP-users, 10 SSP-users) walked on a treadmill at their preferred speed. Spatiotemporal and margin of stability parameters were extracted from three-dimensional movement recordings. In addition, 126-channel electroencephalogram (EEG) was recorded. Brain-related activity from several cortical areas was isolated using independent component analysis. Source-level data were divided into gait cycles and subjected to time-frequency analysis to determine gait-cycle dependent modulations of cortical activity. RESULTS: Persons with TFA walked with smaller and wider steps and with greater variability in mediolateral foot placement than AB subjects; no significant differences were found between BAP- and SSP-users. The EEG analysis yielded four cortical clusters in frontal, central (both hemispheres), and parietal areas. No statistically significant between-group differences were found in the mean power over the entire gait cycle. The event-related spectral perturbation maps revealed differences in power modulations (theta, alpha, and beta bands) between TFA and AB groups, and between BAP- and SSP-users, with largest differences observed around heel strike of either leg. CONCLUSIONS: The anticipated differences in gait parameters in persons with TFA were confirmed, however no significant effect of the fixed suspension of a BAP was found. The preliminary EEG findings may indicate more active monitoring and control of stability in persons with TFA, which appeared to be timed differently in SSP than in BAP-users. Future studies may focus on walking tasks that challenge stability to further investigate differences related to prosthetic suspension.


Asunto(s)
Amputados , Miembros Artificiales , Prótesis Anclada al Hueso , Humanos , Marcha , Amputación Quirúrgica , Caminata , Fenómenos Biomecánicos , Diseño de Prótesis
13.
Nanoscale ; 16(13): 6402-6428, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38488215

RESUMEN

The peripheral nervous and muscular system, a cornerstone of human physiology, plays a pivotal role in ensuring the seamless functioning of the human body. This intricate network, comprising nerves and muscles extending throughout the body, is essential for motor control, sensory feedback, and the regulation of autonomic bodily functions. The qualified implantable peripheral interface can accurately monitor the biopotential of the target tissue and conduct treatment with stimulation, enhancing the human-machine interaction and new achievements in disease cure. Implantable electrodes have revolutionized the field of neuromuscular interfaces, offering precise bidirectional communication between the neuromuscular system and external devices. They enable natural control for individuals with limb loss, bridging the gap between mind and machine and aiding neuromuscular rehabilitation. In research and medical diagnostics, implantable electrodes provide invaluable tools for studying neuromuscular function and the development of therapies. However, traditional rigid electrodes face challenges due to the dynamic nature of the peripheral neuromuscular system. Flexible and stretchable devices show immense promise in accommodating dynamic alterations, offering adaptability, and accurate monitoring of electrophysiological signals. This review delves into the challenges associated with the peripheral interface, primarily focusing on monitoring and stimulation. It then provides a summary of common materials and structural design optimizations, discusses technologies for enhancing interface adhesion and surface functionalization, and explores encapsulation methods for implanted devices. Recent advancements in energy supply and the applications of implantable, flexible, and stretchable devices are also comprehensively reviewed, with due consideration given to ethical concerns and signal analysis. The promising directions are finally presented to provide enlightenment for high-performance sensor-tissue interfaces in the future, which will promote profound progress in clinical and human-machine interaction research. Flexible and stretchable devices are at the forefront of healthcare, with the potential to transform the treatment of neuromuscular disorders and enhance human augmentation, blurring the lines between natural and artificial limbs. They represent a promising avenue for the future, with exciting applications in healthcare, science, and technology, promising to bring us closer to the seamless integration of human and machine in the realm of neuromuscular interfaces.


Asunto(s)
Miembros Artificiales , Dispositivos Electrónicos Vestibles , Humanos , Electrodos Implantados , Electrofisiología
14.
Artículo en Inglés | MEDLINE | ID: mdl-38507380

RESUMEN

Reducing energy consumption during walking is a critical goal for transtibial amputees. The study presents the evaluation of a semi-active prosthesis with five transtibial amputees. The prosthesis has a low-power actuator integrated in parallel into an energy-storing-and-releasing foot. The actuator is controlled to compress the foot during the stance phase, supplementing the natural compression due to the user's dynamic interaction with the ground, particularly during the ankle dorsiflexion phase, and to release the energy stored in the foot during the push-off phase, to enhance propulsion. The control strategy is adaptive to the user's gait patterns and speed. The clinical protocol to evaluate the system included treadmill and overground walking tasks. The results showed that walking with the semi-active prosthesis reduced the Physiological Cost Index of transtibial amputees by up to 16% compared to walking using the subjects' proprietary prosthesis. No significant alterations were observed in the spatiotemporal gait parameters of the participants, indicating the module's compatibility with users' natural walking patterns. These findings highlight the potential of the mechatronic actuator in effectively reducing energy expenditure during walking for transtibial amputees. The proposed prosthesis may bring a positive impact on the quality of life, mobility, and functional performance of individuals with transtibial amputation.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Conservación de los Recursos Energéticos , Calidad de Vida , Articulación del Tobillo/fisiología , Diseño de Prótesis , Fenómenos Biomecánicos , Caminata/fisiología , Marcha/fisiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-38517721

RESUMEN

The primary goal of rehabilitation for individuals with lower limb amputation, particularly those with unilateral transfemoral amputation (uTFA), is to restore their ability to walk independently. Effective control of the center of pressure (COP) during gait is vital for maintaining balance and stability, yet it poses a significant challenge for individuals with uTFA. This study aims to study the COP during gait in individuals with uTFA and elucidate their unique compensatory strategies. This study involved 12 uTFA participants and age-matched non-disabled controls, with gait and COP trajectory data collected using an instrumented treadmill. Gait and COP parameters between the control limb (CL), prosthetic limb (PL), and intact limb (IL) were compared. Notably, the mediolateral displacement of COP in PL exhibited significant lateral displacement compared to the CL from 30% to 60% of the stance. In 20% to 45% of the stance, the COP forward speed of PL was significantly higher than that of the IL. Furthermore, during the initial 20% of the stance, the vertical ground reaction force of PL was significantly lower than that of IL. Additionally, individuals with uTFA exhibited a distinct gait pattern with altered duration of loading response, single limb support, pre-swing and swing phases, and step time. These findings indicate the adaptability of individuals with uTFA in weight transfer, balance control, and pressure distribution on gait stability. In conclusion, this study provides valuable insights into the unique gait dynamics and balance strategies of uTFA patients, highlighting the importance of optimizing prosthetic design, alignment procedures, and rehabilitation programs to enhance gait patterns and reduce the risk of injuries due to compensatory movements.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Amputados/rehabilitación , Fenómenos Biomecánicos , Marcha/fisiología , Caminata/fisiología , Amputación Quirúrgica
16.
J Biomech ; 166: 112054, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38513398

RESUMEN

The objective of this study was to define targeted reaching performance without visual information for transhumeral (TH) prosthesis users, establishing baseline information about extended physiological proprioception (EPP) in this population. Subjects completed a seated proprioceptive targeting task under simultaneous motion capture, using their prosthesis and intact limb. Eight male subjects, median age of 58 years (range 29-77 years), were selected from an ongoing screening study to participate. Five subjects had a left-side TH amputation, and three a right-side TH amputation. Median time since amputation was 9 years (range 3-54 years). Four subjects used a body-powered prosthetic hook, three a myoelectric hand, and one a myoelectric hook. The outcome measures were precision and accuracy, motion of the targeting hand, and joint angular displacement. Subjects demonstrated better precision when targeting with their intact limb compared to targeting with their prosthesis, 1.9 cm2 (0.8-3.0) v. 7.1 cm2 (1.3-12.8), respectively, p = 0.008. Subjects achieved a more direct reach path ratio when targeting with the intact limb compared to with the prosthesis, 1.2 (1.1-1.3) v. 1.3 (1.3-1.4), respectively, p = 0.039 The acceleration, deceleration, and corrective phase durations were consistent between conditions. Trunk angular displacement increased in flexion, lateral flexion, and axial rotation while shoulder flexion decreased when subjects targeted with their prosthesis compared to the intact limb. The differences in targeting precision, reach patio ratio, and joint angular displacements while completing the targeting task indicate diminished EPP. These findings establish baseline information about EPP in TH prosthesis users for comparison as novel prosthesis suspension systems become more available to be tested.


Asunto(s)
Miembros Artificiales , Extremidad Superior , Humanos , Masculino , Adulto , Persona de Mediana Edad , Anciano , Implantación de Prótesis , Amputación Quirúrgica , Propiocepción , Diseño de Prótesis
17.
Gait Posture ; 109: 318-326, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38432038

RESUMEN

BACKGROUND: Low back pain (LBP) is more prevalent in patients with transfemoral amputation using socket prostheses than able-bodied individuals, in part due to altered spinal loading caused by aberrant lumbopelvic movement patterns. Early evidence surrounding bone-anchored limb functional outcomes is promising, yet it remains unknown if this novel prosthesis influences LBP or movement patterns known to increase its risk. RESEARCH QUESTION: How are self-reported measures of LBP and lumbopelvic movement coordination patterns altered when using a unilateral transfemoral bone-anchored limb compared to a socket prosthesis? METHODS: Fourteen patients with unilateral transfemoral amputation scheduled to undergo intramedullary hardware implantation for bone-anchored limbs due to failed socket use were enrolled in this longitudinal observational cohort study (7 F/7 M, Age: 50.2±12.0 years). The modified Oswestry Disability Index (mODI) (self-reported questionnaire) and whole-body motion capture during overground walking were collected before (with socket prosthesis) and 12-months following bone-anchored limb implantation. Lumbopelvic total range of motion (ROM) and continuous relative phase (CRP) segment angles were calculated during 10 bilateral gait cycles. mODI, total ROM, CRP and CRP variabilities were compared between time points. RESULTS: mODI scores were significantly reduced 12-months after intramedullary hardware implantation for the bone-anchored limb (P = 0.013). Sagittal plane trunk and pelvis total ROM during gait were reduced after implantation (P = 0.001 and P < 0.001, respectively). CRP values were increased (more anti-phase) in the sagittal plane during single limb stance and reduced (more in-phase) in the transverse plane during pre-swing of the amputated limb gait cycle (P << 0.001 and P = 0.029, respectively). No differences in CRP values were found in the frontal plane. SIGNIFICANCE: Decreases in mODI scores and lumbopelvic ROM, paired with the changes in lumbopelvic coordination, indicate that bone-anchored limbs may reduce LBP symptoms and reduce compensatory movement patterns for people with unilateral transfemoral amputation.


Asunto(s)
Amputados , Miembros Artificiales , Dolor de la Región Lumbar , Humanos , Adulto , Persona de Mediana Edad , Caminata , Marcha , Amputación Quirúrgica , Fenómenos Biomecánicos
18.
PM R ; 16(4): 409-417, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545751

RESUMEN

The field of medicine continues to advance as new technologies emerge. These technological advancements include the science of sports prostheses and wheelchairs, in which there have been significant advancements over the past decades. The world of adaptive sports continues to expand, largely due to a combination of the increase in awareness, inclusion, and technology. As participation in sports for people with impairments increases, there has been an associated demand for new, innovative adaptive sporting equipment designs that help accommodate the physical deficits of the individual. Controversy has risen as persons with disabilities advance their skills with adaptive sports equipment to compete with individuals without disabilities. The controversy leads to the question: is the adaptive equipment allowing athletes with disability to regain the lost function from their baseline or does it allow them to exceed prior ability level? This narrative review provides information regarding the performance effects of advances in technology and biomechanics of adaptive sports equipment to help answer these questions.


Asunto(s)
Miembros Artificiales , Rendimiento Atlético , Personas con Discapacidad , Deportes para Personas con Discapacidad , Silla de Ruedas , Humanos , Tecnología
19.
Trials ; 25(1): 220, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532422

RESUMEN

BACKGROUND: Trapeziometacarpal (TMC) osteoarthritis (OA) is a common cause of pain and weakness during thumb pinch leading to disability. There is no consensus about the best surgical treatment in unresponsive cases. The treatment is associated with costs and the recovery may take up to 1 year after surgery depending on the procedure. No randomized controlled trials have been conducted comparing ball and socket TMC prosthesis to trapeziectomy with ligament reconstruction. METHODS: A randomized, blinded, parallel-group superiority clinical trial comparing trapeziectomy with abductor pollicis longus (APL) arthroplasty and prosthetic replacement with Maïa® prosthesis. Patients, 18 years old and older, with a clinical diagnosis of unilateral or bilateral TMC OA who fulfill the trial's eligibility criteria will be invited to participate. The diagnosis will be made by experienced hand surgeons based on symptoms, clinical history, physical examination, and complementary imaging tests. A total of 106 patients who provide informed consent will be randomly assigned to treatment with APL arthroplasty and prosthetic replacement with Maïa® prosthesis. The participants will complete different questionnaires including EuroQuol 5D-5L (EQ-5D-5L), the Quick DASH, and the Patient Rated Wrist Evaluation (PRWE) at baseline, at 6 weeks, and 3, 6, 12, 24, 36, 48, and 60 months after surgical treatment. The participants will undergo physical examination, range of motion assessment, and strength measure every appointment. The trial's primary outcome variable is the change in the visual analog scale (VAS) from baseline to 12 months. A long-term follow-up analysis will be performed every year for 5 years to assess chronic changes and prosthesis survival rate. The costs will be calculated from the provider's and society perspective using direct and indirect medical costs. DISCUSSION: This is the first randomized study that investigates the effectiveness and cost-utility of trapeziectomy and ligament reconstruction arthroplasty and Maïa prosthesis. We expect the findings from this trial to lead to new insights into the surgical approach to TMC OA. TRIAL REGISTRATION: ClinicalTrials.gov NCT04562753. Registered on June 15, 2020.


Asunto(s)
Miembros Artificiales , Hueso Trapecio , Humanos , Artroplastia , Análisis Costo-Beneficio , Ligamentos/cirugía , Ensayos Clínicos Controlados Aleatorios como Asunto , Rango del Movimiento Articular , Hueso Trapecio/cirugía , Adulto
20.
J Biomech Eng ; 146(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456810

RESUMEN

This paper introduces a hands-on laboratory exercise focused on assembling and testing a hybrid soft-rigid active finger prosthetic for biomechanical and biomedical engineering (BME) education. This hands-on laboratory activity focuses on the design of a myoelectric finger prosthesis, integrating mechanical, electrical, sensor (i.e., inertial measurement units (IMUs), electromyography (EMG)), pneumatics, and embedded software concepts. We expose students to a hybrid soft-rigid robotic system, offering a flexible, modifiable lab activity that can be tailored to instructors' needs and curriculum requirements. All necessary files are made available in an open-access format for implementation. Off-the-shelf components are all purchasable through global vendors (e.g., DigiKey Electronics, McMaster-Carr, Amazon), costing approximately USD 100 per kit, largely with reusable elements. We piloted this lab with 40 undergraduate engineering students in a neural and rehabilitation engineering upper year elective course, receiving excellent positive feedback. Rooted in real-world applications, the lab is an engaging pedagogical platform, as students are eager to learn about systems with tangible impacts. Extensions to the lab, such as follow-up clinical (e.g., prosthetist) and/or technical (e.g., user-device interface design) discussion, are a natural means to deepen and promote interdisciplinary hands-on learning experiences. In conclusion, the lab session provides an engaging journey through the lifecycle of the prosthetic finger research and design process, spanning conceptualization and creation to the final assembly and testing phases.


Asunto(s)
Miembros Artificiales , Ingeniería Biomédica , Humanos , Ingeniería Biomédica/educación , Extremidad Superior , Mano , Curriculum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...